background-image: url("images/climate-bars.png") background-size: cover <br><br><br><br><br><br><br><br><br> .rightcol85[.white[ ## Quantifying the cost savings of global solar photovoltaic supply chains **.white[John Paul Helveston]**, George Washington University<br> Gang He, Stonybrook University<br> Michael Davidson, UC San Diego November 18, 2022 ]] --- class: center, middle background-color: #FFFFFF ## Between 2010 - 2020, global levelized cost of energy (LCOE) of utility-scale solar PV fell by 85% <center> <img src="images/cost-world.png" width=70%> </center> --- class: center, middle background-color: #FFFFFF ## China's "gift to the world" <center> <img src="images/pv-production.png" width=60%> </center> --- class: center, middle background-color: #FFFFFF ## China's "gift to the world" .leftcol60[ <center> <img src="images/pv-production.png" width=100%> </center> ] .rightcol40[ China comprises ~70% of global PV manufacturing .left[ **Response**: - **Tariffs** on imported Chinese PV panels (US and EU) - **Defense Production Act** invoked to accelerate US PV manufacturing (June 2022) - **Inflation Reduction Act** passes w/incentives for domestic PV manufacturing (July 2022) ]] --- # .center[Same tensions in every low-carbon technology] ## .center[China is manufacturing leader in almost every sector] .font120[ Technology | Scale ----|------ Solar Panels | From 1% to 70% (2001 - 2019) Wind Turbines | 1/3 of global supply (2020) Electric Vehicles | 51% of global sales (2021) Lithium-ion Batteries | 70% of global production (76% by 2025) Nuclear Reactors | From 45 to 88 plants by 2030 ] --- class: middle, center, inverse # What's the cost of<br>.red[national] versus .blue[global]<br>supply chains? ??? Restricting the free flow of capital, talent, and innovation Localizing benefits in terms of growth, employment, and trade surpluses --- background-color: #FFFFFF ## .center[Learning curve model] <center> <img src="images/learning-curve.png" width=65%> </center> --- background-color: #FFFFFF ## .center[Learning curve model] .leftcol60[ <center> <img src="images/learning-curve.png" width=100%> </center> ] .rightcol40[ In context of solar PV: - X: Cumulative installed cap. - Y: = Price per kW <br> Log transformation: `$$\ln Y = \ln a + b \ln X$$` ] --- ## Two-factor learning curve model: <br> ## `$$\ln p_{it} = \ln \alpha_i + \beta_i \ln q_{t} + \gamma_i \ln s_{t} + \varepsilon_{it}$$` <br> ## price ($ / kW) = intercept + installed capacity + silicon price ## for country _i_ and year _t_ --- background-color: #fff <center> <img src="images/silicon_prices.png" width=75%> </center> --- ## Two-factor learning curve model: <br> ## `$$\ln p_{it} = \ln \alpha_i + \beta_i \ln q_{t} + \gamma_i \ln s_{t} + \varepsilon_{it}$$` <br> ## Learning rate: ## `$$L_i = 1 - 2^{\beta_i}$$` --- class: middle ## .center[Data Sources] Country | Data | Source --------|-----|---------------- Global | Installed PV capacity and prices | International Renewable Energy Agency (IRENA) U.S. | Installed capacity | Solar Energy Industries Association (SEIA) U.S. | Module prices | Lawrence Berkeley National Laboratory (LBNL) & National Renewable Energy Laboratory (NREL) China | Installed capacity & module prices | Energy Research Institute (ERI) & China Photovoltaic Industry Association Germany | Installed capacity | IRENA Germany | Module prices | Fraunhofer ISE50 All prices are in $2020 USD<br>(inflation adjustments from IMF, exchange rates from Federal Reserve Bank) --- ## Model results | | United States | China | Germany | | ----------------------------------- | -------------------- | -------------------- | -------------------- | | | Est. (Std. Err.) | Est. (Std. Err.) | Est. (Std. Err.) | | (Intercept) | 15 (1.04)\*\*\* | 18 (1.58)\*\*\* | 12 (0.96)\*\*\* | | log(cum\_capacity\_kw) | \-0.44 (0.045)\*\*\* | \-0.57 (0.070)\*\*\* | \-0.33 (0.042)\*\*\* | | log(price\_si) | 0.15 (0.058)\* | 0.23 (0.079) | 0.21 (0.054) | \*p<0.05; \*\*p<0.01; \*\*\*p<0.001 ## Learning rates: `\(L_i = 1 - 2^{\beta_i}\)` - U.S.: 26% - China: 33% - Germany: 20% --- class: center, middle background-color: #FFFFFF ## U.S.: 26%; China: 33%; Germany: 20% <center> <img src="images/cost_historical_global_plot.png" width=100%> </center> --- ## .center["National Markets" Counterfactual Scenario] **Assumption**: learning-related price decreases in country _i_ in year _t_ are derived from incrementally more nationally-installed PV capacity ## `$$q_t - q_{t-1} = (q_{it} - q_{it-1}) + (1 - \lambda_t) (q_{jt} - q_{jt - 1})$$` ## `\((q_{it} - q_{it-1})\)`: Amount installed in country _i_ ## `\((q_{jt} - q_{jt-1})\)`: Amount installed in all other countries --- class: center ## `$$q_t - q_{t-1} = (q_{it} - q_{it-1}) + (1 - \lambda_t) (q_{jt} - q_{jt - 1})$$` <br> .leftcol[ ## **Global markets** `\(\lambda_t = 0\)` Capacity from all countries `$$(q_{it} - q_{it-1}) + (q_{jt} - q_{jt - 1})$$` ] .rightcol[ ## **National markets** `\(\lambda_t = 1\)` Capacity only from country _i_ `$$(q_{it} - q_{it-1})$$` <br> `\(\lambda_t\)` -> 1 over 10-year period ] --- class: middle background-color: #FFFFFF <center> <img src="images/cost-historical.png" width=100%> </center> **Higher prices in 2020**: - 54% higher in China ($387 versus $250 per kW) - 83% in higher Germany ($652 versus $357 per kW) - 107% higher in the U.S. ($877 versus $424 per kW) --- class: middle, center background-color: #FFFFFF ## **Total Savings: $67 billion ($50 - $84 billion)** <center> <img src="images/savings-historical.png" width=100%> </center> --- class: inverse, middle, center # Future projections --- class: center, middle ## Two future projection scenarios out to 2030 .leftcol[ #### National Trends (NT) | Country | 2030 Target (GW) | Implied CAGR | | ------- | ---------------- | ------------ | | U.S. | 295 | 12% | | China | 750 | 12% | | Germany | 103 | 7% | | World | 2,115 | 11% | ] .rightcol[ #### Sustainable Development (SD) | Country | 2030 Target (GW) | Implied CAGR | | ------- | ---------------- | ------------ | | U.S. | 628 | 21% | | China | 1,106 | 17% | | Germany | 147 | 11% | | World | 3,125 | 16% | (Sustainable Development Scenario in the 2020 IEA World Energy Outlook) ] --- background-color: #FFFFFF <center> <img src="images/cost-proj.png" width=100%> </center> --- ## .center[Higher prices in 2030] .leftcol[ #### .center[National Trends (NT)] .center[**~20% higher in each country**] - China: $162 versus $135 per kW - Germany: $298 versus $251 per kW - U.S.: $320 versus $262 per kW ] .rightcol[ #### .center[Sustainable Development (SD)] .center[**~25% higher in each country**] - China: $136 versus $108 per kW - Germany: $276 versus $221 per kW - U.S.: $276 versus $221 per kW ] <br> For comparison, NREL's 2021 Annual Technology Baseline report predicts $170, $190, and $320 / kW by 2030 in advanced, moderate, and conservative improvement scenarios. --- class: middle, center, inverse # Sensitivity analysis app ## https://jhelvy.shinyapps.io/solar-learning-2021/ --- class: inverse background-image: url("images/climate-bars.png") background-size: cover <br><br><br><br><br><br><br><br><br><br> # Thanks! ### Slides: ### https://slides.jhelvy.com/2022-appam-solar-learning/ .footer-large[.white[.right[ @jhelvy@fediscience.org
<br> @JohnHelveston
<br> @jhelvy
<br> jhelvy.com
<br> jph@gwu.edu
]]] --- class: center, middle, inverse # Extra slides --- <center> <img src="images/savings-proj.png" width=100%> </center>