layout: true <!-- this adds the link footer to all slides, depends on my-footer class in css--> <div class="footer-small"> <span> <a href="#background">Background</a> | <a href="#choose">Conjoint Studies</a> | <a href="#packages">Software</a> </span> </div> --- # .center[Using Marketing Analytics to Measure Consumer Preferences and Inform Policy] <br> .leftcol40[ <center> <img src="images/gwu.png" width=300> </center> ] .rightcol55[ ###
John Paul Helveston, Ph.D. ###
Eng. Management & Systems Eng. ###
February 21, 2024 ] --- name: background # Hello World! .leftcol30[.circle[ <img src="images/john_helveston_circle.png" width="300"> ]] .rightcol70[ ### John Helveston, Ph.D. .font80[ Assistant Professor, Engineering Management & Systems Engineering - 2016-2018 Postdoc at [Institute for Sustainable Energy](https://www.bu.edu/ise/), Boston University - 2016 PhD in Engineering & Public Policy at Carnegie Mellon University - 2015 MS in Engineering & Public Policy at Carnegie Mellon University - 2010 BS in Engineering Science & Mechanics at Virginia Tech - Website: [www.jhelvy.com](http://www.jhelvy.com/) ]] --- class: center ## Technology Change Lab > I study how consumers, firms, markets, and policy affect technological change, with a focus on accelerating the transition to low-carbon technologies .cols3[ ### .center[Electric & Sustainable Vehicle Technologies] <center> <img src="images/ev.png" width=280> </center> ] .cols3[ ### .center[Market & Policy Analysis] <center> <img src="images/market.png" width=250> </center> ] .cols3[ ### .center[U.S. - China Climate Relationship] <center> <img src="images/uschina.png" width=100%> </center> ] --- class: center background-color: #fff # What is Data Analytics? .font120[The science of analyzing raw data to draw out<br>**meaningful & actionable insights** to **inform decision-making**] -- <center> <img src="images/da-process.png" width=1000> </center> Image from https://r4ds.hadley.nz/ --- ## I'm interested in questions like... <br> -- ### - How can we get people to buy more efficient vehicles? -- ### - How will emerging technology like autonomous and electric vehicles compete against existing technologies? -- ### - Would people be willing to pay a premium to reduce pollution? -- ## **Answers depend on knowing what people want** --- background-color: #000 class: center, middle, inverse # So I try to figure out what people want <center> <img src="images/crystal_ball.jpg" width=500> </center> --- class: center, middle ## Which feature do you care more about? <center> <img src="images/phone.png" width=200> </center> .cols3[ ## .center[Battery Life?] <center> <img src="images/phone_battery.png" width=100%> </center> ] .cols3[ ## .center[Brand?] <center> <img src="images/phone_brand.png" width=100%> </center> ] .cols3[ ## .center[Signal quality?] <center> <img src="images/phone_signal.png" width=100%> </center> ] --- class: center ## **Conjoint Analysis**: ## Use choice data to model preferences <center> <img src="images/conjoint_table.png" width=900> </center> --- ### .center[Use random utility framework to predict probability of choosing phone _j_] <br> -- ### 1. `\(u_j = \beta_1\mathrm{price}_j + \beta_2\mathrm{brand}_j + \beta_3\mathrm{battery}_j + \beta_4\mathrm{signal}_j + \varepsilon_j\)` -- ### 2. Assume `\(\varepsilon_j \sim\)` iid Gumbel distribution -- ### 3. Probability of choosing phone _j_: `\(P_j = \frac{e^{\beta'x_j}}{\sum_k^J e^{\beta'x_k}}\)` -- ### 4. Estimate `\(\beta_1\)`, `\(\beta_2\)`, `\(\beta_3\)`, `\(\beta_4\)` via maximum likelihood estimation --- class: center .leftcol[.center[ ## **Willingness to Pay** <br> .font140[Respondents on average are willing to pay $XX to improve battery life by XX%] ]] -- .rightcol[ ## **Make predictions** ### `\(P_j = \frac{e^{\hat{\beta}'x_j}}{\sum_k^J e^{\hat{\beta}'x_k}}\)` <center> <img src="images/phone_price_sens.png" width=500> </center> ] --- name: choose class: middle, inverse, center # Choose your own adventure ## [.red[Electric Vehicles]](#ev) ## [.orange[Low-carbon Fuels]](#fuel) ## [.yellow[Multi-modal Trips]](#modes) ## [.green[Autonomous Vehicles]](#av) ## [.blue[Electric Vehicle Incentives]](#incentive) --- name: ev class: inverse ## Will subsidies drive electric vehicle adoption? Measuring consumer preferences in the U.S. and China .leftcol[ Helveston, John P., CMU Yimin Liu, Ford Elea M. Feit, Drexel U. Erica R.H. Fuchs, CMU Erica Klampfl, Ford Jeremy J. Michalek, CMU ] .rightcol[ _Transportation Research Part A: Policy and Practice_, 73, 96–112. (2015) DOI: 10.1016/j.tra.2015.01.002 ] --- <center> <img src="images/conjoint_cars.png" width=1000> </center> --- class: middle .leftcol35[ ## Chinese car buyers may be more willing to adopt full electric vehicles than Americans. ] .rightcol65[ <center> <img src="images/wtp_cars.png" width=100%> </center> ] --- class: middle, center, inverse # [.green[Return to choices]](#choose) # [.red[Skip to end]](#packages) --- name: fuel class: inverse ## Choice at the Pump: Measuring Preferences for Lower-Carbon Combustion Fuels? .leftcol[ John P. Helveston, GWU Stephanie M. Seki, CMU Jihoon Min, CMU Evelyn Fairman, CMU Arthur A. Boni, CMU Jeremy J. Michalek, CMU Inês M. L. Azevedo, CMU ] .rightcol[ _Environmental Research Letters_, 14(8) (2019) DOI: 10.1088/1748-9326/ab2bd2 ] --- background-color: #fff <center> <img src="images/conjoint_fuels.png" width=1000> </center> --- ## On average, respondents WTP $150/ton CO2 avoided .leftcol75[ <center> <img src="images/wtp_fuels.png" width=100%> </center> ] .rightcol25[ Example: - 26 mpg car - 12-gallon tank - Gas: $3/gallon **A WTP of $150/ton CO2 avoided means increasing fuel price by 45%!** ] --- class: middle, center, inverse # [.green[Return to choices]](#choose) # [.red[Skip to end]](#packages) --- name: modes class: inverse ## Measuring consumer preferences for multi-modal trips <br> John P. Helveston, Assistant Professor, EMSE Lujin Zhao, Ph.D. Student, EMSE Saurav Pantha, MS Alumni & Visiting Scholar, EMSE --- <center> <img src="images/conjoint_tmf.png" width=900> </center> --- class: center .leftcol[ ## Value of time <center> <img src="images/wtp_tmf_time.png" width=100%> </center> ] .rightcol[ ## Value of mode <center> <img src="images/wtp_tmf_mode.png" width=100%> </center> ] --- class: center <br> .leftcol[ <center> <img src="images/sim_tmf_walk.png" width=100%> </center> ] .rightcol[ <center> <img src="images/sim_tmf_bus.png" width=100%> </center> ] --- class: middle, center, inverse # [.green[Return to choices]](#choose) # [.red[Skip to end]](#packages) --- name: av class: inverse # Undercutting Transit? ## Exploring potential competition between autonomous vehicles and public transportation in the U.S. <br> John P. Helveston, Assistant Professor, EMSE Leah Kaplan, Ph.D. Student, EMSE --- background-color: #fff class: middle, center ## Imagine you are going out for an evening leisure activity - <br> Which transportation option would you choose/ <center> <img src="images/conjoint_av.png" width=1100> </center> --- background-color: #fff class: center, middle <center> <img src="images/wtp_av.png" width=100%> </center> --- background-color: #fff class: center, middle <center> <img src="images/sim_badTransit.png" width=900> </center> --- background-color: #fff class: center, middle <center> <img src="images/sim_proRail.png" width=900> </center> --- background-color: #fff class: center, middle <center> <img src="images/sim_all.png" width=1000> </center> --- class: middle, center, inverse # [.green[Return to choices]](#choose) # [.red[Skip to end]](#packages) --- name: incentive class: inverse ## Not All Subsidies are Equal:<br>Measuring Preferences for EV Financial Incentives <br> John P. Helveston, Assistant Professor, EMSE Laura Roberson, Ph.D. Student, EMSE --- background-color: #fff class: middle, center # Which incentive option would you prefer? <center> <img src="images/conjoint_incentives.png" width=1100> </center> --- background-color: #fff class: middle .leftcol[ <center> <img src="images/sample_incentives.png" width=430> </center> ] .rightcol[ ## Sample - Used [formr.org](https://formr.org/) Survey Platform - Fielded September, 2021 - Nationwide sample of Dynata panel ] --- background-color: #fff class: center, middle ### Immediate rebate is **$1,400** more valuable than tax credit <center> <img src="images/wtp_incentives.png" width=850> </center> --- background-color: #fff class: center ### Immediate rebate even more preferred for **low-income households** <center> <img src="images/wtp_incentives_income.png" width=850> </center> --- background-color: #fff <center> <img src="images/tax_total.png" width=930> </center> --- class: middle, center, inverse # [.green[Return to choices]](#choose) # [.red[Skip to end]](#packages) --- name: packages .leftcol[ # .blue[.center[[`logitr`](https://jhelvy.github.io/logitr/)]] <center> <img src="images/hex_logitr.png" width=250> </center> Fast estimation of multinomial and mixed logit models in R with “Preference” space or “Willingness-to-pay” space utility parameterizations. [https://jhelvy.github.io/logitr/](https://jhelvy.github.io/logitr/) ] .rightcol[ # .blue[.center[[`cbcTools`](https://jhelvy.github.io/cbcTools/)]] <center> <img src="images/hex_cbcTools.png" width=250> </center> Tools for designing choice based conjoint (cbc) survey experiments and conduction power analyses. [https://jhelvy.github.io/cbcTools/](https://jhelvy.github.io/cbcTools/) ] --- class: inverse <br> # .center[.font150[Thanks!]] ### .center[Slides: https://slides.jhelvy.com/] .footer-large[ .right[ @JohnHelveston
<br> @jhelvy
<br> @jhelvy
<br> jhelvy.com
<br> jph@gwu.edu
]]